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We investigate the effects produced on the light scattering spectrum by the anisotropic diffusion of impuri-
ties in an incompressible nematic solvent. The spectrum is calculated by using a fluctuating hydrodynamic
description when the system is both in a fully thermodynamic equilibrium state and in a nonequilibrium steady
state induced by a dye-concentration gradient. In the former state, the isotropic pretransitional phase as well as
the nematic phase of the solvent are considered. This spectrum is symmetric(Lorentzian) with respect to the
frequency shifts, but anisotropic through its explicit dependence on the ratio of the diffusion coefficients of the
dye parallel and normal to the mean molecular axis of the nematic. The values of these coefficients were taken
from experimental measurements of diffusion of methylred and nitrosodimethylaniline in a
N-(p-methoxybenzylidene)-p-butylaniline(MBBA ) solvent. This anisotropy changes the height and the width
at mid height with respect to the isotropic case in amounts which for MBBA vary up to 36% and 26%. We also
calculate the spectrum in the presence of a concentration gradient of the dye and find that its presence gives rise
to an asymmetry of the spectrum in its dependence on the frequency shift; its maximum increases and is
displaced with respect to its equilibrium position. The size and direction of this shift are proportional to the
magnitude of the dye-concentration gradient and depend on its relative orientation with respect to the scattering
vector. For small dimensionless concentration gradientss,10−2d, this effect is maximum when these vectors
are parallel and the scattering angle is lows,1°d. The maximum degree of departure from equilibrium is
significant and turns out to be approximately 55%. In view of the significant changes in the spectrum, our
theoretical analysis suggests that these effects might be observable.
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I. INTRODUCTION

In a liquid, fluctuations occur spontaneously and continu-
ously, and the local perturbations arising from them disturb
the equilibrium state of the system. As a result, relaxation
processes involving a large number of particles are gener-
ated, and these slow, collective modes relax toward their
equilibrium values. The response of the system can be de-
scribed in terms of incremental variables and the equations
governing them. Since these fluctuations around their aver-
age equilibrium value are usually small, the equations de-
scribing their space and time variations can be obtained by
linearizing the general equations of motion.

The investigation of the effects of fluctuations about non-
equilibrium stationary states of simple fluids has attracted
increasing attention during the last two decades. Simple flu-
ids subject to a static temperature or pressure gradient have
been investigated[1–4], and some of the predicted results
were detected by light scattering experiments[5,6]. Similar
studies have also been developed for some nonequilibrium
stationary states of nematic liquid crystals, such as those
generated by a static temperature gradient[7], a stationary
shear flow[8], or an externally imposed constant pressure
gradient[9,10]. Although in the first two cases it was found
that the nonequilibrium contributions to the corresponding

light scattering spectra were small, in the case of a Poiseuille
flow induced by an external pressure gradient the effect may
be quite large and might be observable. However, to our
knowledge, at present there is no experimental confirmation
of these effects, in spite of the fact that for nematics the
scattered intensity is several orders of magnitude larger than
for ordinary fluids.

On the other hand, in the last two decades mass diffusion
in mesophases has been extensively studied by a variety of
experimental methods. Diffusion coefficients have been mea-
sured by mass transport and densitometric techniques, by
means of NMR spin-echo techniques, and by quasielastic
neutron scattering, and detected optically or by radiotracers
[11]. Early measurements of mass diffusion in liquid crystals
using impurity diffusion have shown that the diffusion is
anisotropic in most cases[12,13]. The diffusion of small par-
ticles dissolved in nematics(impurity diffusion) has shown
that diffusion parallel to the directorsDid is faster than per-
pendicularsD'd to it. The ratio of these diffusion coefficients
seems to be independent of the actual shape of the diffusing
molecule[14–16]. However, to our knowledge, investigation
of the effects of this asymmetry on the light scattering spec-
trum has not been considered.

In this paper, we report theoretical results describing the
effects on the light scattering spectrum produced by the an-
isotropic diffusion of impurities in an incompressible nem-
atic solvent. This spectrum is calculated by using a fluctuat-
ing hydrodynamic description when the solvent is in both a
fully thermodynamic equilibrium state and a nonequilibrium
steady state induced by a dye-concentration gradient. We find

*Electronic address: hijar@fisica.unam.mx
†Corresponding author.

Electronic address: zepeda@fisica.unam.mx

PHYSICAL REVIEW E 69, 051701(2004)

1539-3755/2004/69(5)/051701(8)/$22.50 ©2004 The American Physical Society69 051701-1



that the height of the central peak in the equilibrium Lorent-
zian due to transverse director fluctuations is changed and
that its shape becomes asymmetric due to the applied con-
centration gradient by an amount determined by its magni-
tude. The maximum difference between the nonequilibrium
and equilibrium contributions to the spectrum for various
values of the external gradient is estimated. It is found that
this anisotropy increases with the magnitude of the gradient
and has an important effect on the nonequilibrium part of the
spectrum. Our theoretical analysis suggests that these effects
might be observable.

II. MODEL AND BASIC EQUATIONS

Consider a dilute suspension of noninteracting impurities
diffusing through an initially quiescent thermotropic nematic
liquid crystal solvent, as depicted in Fig. 1. In nematics, as in
ordinary isotropic liquids, sound waves may propagate and
all the remaining hydro-dynamic modes are diffusive. In
studying the latter, we shall assume that the temperature per-
turbations are sufficiently small so that the nematic fluid may
be regarded as incompressible. There are different forms for
introducing this restriction into the set of nematodynamic
equations[17,18]. Here we follow the Leslie-Ericksen ap-
proach and eliminate the term divvW by settingn2=n4 and
n5=0 [17], where, as we shall define later on,n2, n4, andn5
denote several nematic viscosity coefficients.vWsrW ,td stands
for the nematic’s hydrodynamic velocity field.

For the homeotropic configuration in Fig. 1, the chosen
initial director’s orientationn̂0 is indicated with respect to the
origin at the center of the cell so thatn̂0=s0,0,1d, and the
light scattering process is also sketched. The incident wave

vector kW1 is directed along thez axis, while the scattered

wave vectorkW2 is chosen to be in the(scattering) y-z plane.
p̂1=s1,0,0d and p̂2=s0,−cosu ,sin ud denote, respectively,
the incident and scattered unit polarization vectors, whereu
is the scattering angle. The scattering process is associated

with a wave vector changekW =kW1−kW2 and with a frequency
shift v=v1−v2. It should be pointed out that this scattering

geometry is experimentally feasible and corresponds to one
of the configurations used by Chatelain[19].We shall ana-
lyze only those nonequilibrium states of the suspension for a
solvent at rest, defined by the stationary concentration field
of impurities

cssrWd = c0 + rW ·¹W c, s1d

where ¹W c is a uniform concentration gradient on they-z
plane whose direction is specified by the anglec in Fig. 1,
and c0 is the impurity concentration at equilibrium. With

respect ton̂0 and the wave vectorkW defined abovef20g, the
hydrodynamic variables of the nematic solvent may be di-
vided into two independent sets, namely, transverse and lon-
gitudinal. The former set ishnxsrW ,td ,vxsrW ,tdj, while the latter
is hrsrW ,td ,ssrW ,td ,vysrW ,td ,vzsrW ,td ,nysrW ,tdj. Here rsrW ,td and
ssrW ,td are, respectively, the local mass density and the vol-
ume density entropy. The specific entropysentropy per unit
massd ssrW ,td is related tossrW ,td throughs=sr−1, and n̂srW ,td
is the unitary director field.

The hydrodynamic description of a uniaxial nematic liq-
uid crystal is well established and has been verified experi-
mentally in detail[21–24]. Its generalization to include elec-
trohydrodynamic effects has also been accomplished,
triggered by the many electro-optic effects existing in these
liquids which have produced a variety of applications in dis-
play devices[25]. If the suspension is sufficiently diluted, the
presence of the impurities does not appreciably perturb the
dynamics of the liquid crystal, and linear deviations around
an equilibrium state defined byr0, ni

0, ands0 will be denoted
by drsrW ,td=rsrW ,td−r0, dvisrW ,td=visrW ,td, dnisrW ,td=nisrW ,td
−ni

0, anddssrW ,td=ssrW ,td−s0. The description of the hydrody-
namic state of the nematic may also be accomplished by
using the pressure fieldpsrW ,td instead of the density field
rsrW ,td, or the temperature fieldTsrW ,td instead of the entropy
field ssrW ,td, since these fluctuations are related through well
known thermodynamic relations[26].

Years ago Landau and Lifshitz[27] proposed a pioneering
method to describe fluctuations about equilibrium states
where the fluctuation-dissipation theorem and linear re-
sponse can be used effectively. Their justification in terms of
the general framework of Onsager’s theory of irreversible
processes[28,29] was achieved by Fox and Uhlenbeck
[28–31], and their formulation allowed for the use of state
variables which did not posses a definite time reversal sym-
metry. This generalization is necessary for applications to the
hydrodynamics of simple and complex fluids such as liquid
crystals. The equations of motion for the above thermal fluc-
tuations are derived from the well known general hydrody-
namic equations for a nematic[17,18,32,33] by introducing
fluctuating components into the momentum current of the
solvent,si jsrW ,td, the entropy currentj i

ssrW ,td, and the relax-
ation quasicurrent of the orientation of the nematic,Yi. These

stochastic components are, respectively,¹W joi jsrW ,td, Ji
ssrW ,td,

and YisrW ,td and are chosen so that they are zero averaged
stochastic processeskoi jsrW ,tdl=kYisrW ,tdl=kJi

ssrW ,tdl=0, satis-
fying fluctuation-dissipation relations of the form

FIG. 1. Schematic representation of a plane homeotropic nem-
atic cell with a concentration gradient in the direction defined byc.
u is the scattering angle.
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koi j
srW,tdokl

srW8,t8dl = 2kBT0ni jkl
0 dsrW − rW8ddst − t8d, s2d

kYisrW,tdY jsrW8,t8dl = 2kBT0
1

g1
di j

0'dsrW − rW8ddst − t8d, s3d

kJi
ssrW,tdJj

ssrW8,t8dl = 2kBki j
0dsrW − rW8ddst − t8d, s4d

wherekB is Boltzmann’s constant,g1 is a reorientational vis-
cosity of the nematic, and the superscript 0 denotes the lin-
earized quantity. The linearized projection operatordi j

0' and
the thermal conductivity tensorki j

0, are defined, respectively,
by di j

'0=di j −ni
0nj

0 and ki j
0 =k'di j +kani

0nj
0, where di j is the

usual Kronecker delta,ka;ki−k' is the anisotropy in the
thermal conductivity, andk' andki denote, respectively, its
perpendicular and parallel components with respect to the
director field. Also, the linearized viscous tensorni jkl

0 is

ni jkl
0 = n2sd jldik+dild jkd + 2sn1 + n2 − 2n3dni

0nj
0nk

0nl
0

+ sn3 − n2dsnj
0nl

0dik + nj
0nk

0dil + ni
0nk

0d jl + ni
0nl

0d jkd

+ sn4 − n2ddi jdkl + sn5 − n4 + n2dsdi jnk
0nl

0 + dklni
0nj

0d.

s5d

Here ni , i =1, . . . ,5, denote several nematic viscosity coeffi-
cients.

This process yields a complete set of linearized hydrody-
namic equations for an incompressible nematic in the geom-
etry under consideration. However, as will be shown below,
in this case it is unnecessary to know their explicit form.
They may be found in Refs.[9] and [26].

Let us now turn our attention to the suspended impurities.
If no chemical reactions occur between them, their total
number is conserved and their local concentration density
csrW ,td obeys the conservation equation

dc

dt
+ ¹W iJi = 0, s6d

whereJisrW ,td is the flux of the diffusing particles, which for
a uniaxial nematic is

JisrW,td = − DijsrW,td¹W jcsrW,td + csrW,tdvisrW,td, s7d

wherevisrW ,td is the velocity field of the solvent andDijsrW ,td
is the diffusion tensor of the suspended impurities. For a
nematicDij has the standard uniaxial form

DijsrW,td = D'di j + DanisrW,tdnjsrW,td. s8d

Here the diffusion anisotropy is defined asDa;Di−D'. Us-
ing these equations we arrive at the following diffusion equa-
tion for csrW ,td:

] c

] t
= D'¹W 2c + Daninj¹W i¹W jc + Dasni¹W inj + nj¹W inid¹W jc

− vi¹W ic. s9d

Note that there is an explicitsnonlineard coupling with the

nematic through the dynamics of its directionnisrW ,td and
velocity fieldsvisrW ,td.

To describe the response of the system to small perturba-
tions originating in spontaneous thermal fluctuations, we in-
troduce the incremental variabledcsrW ,td;csrW ,td−cssrWd de-
fined with respect to the stationary statecssrWd. As mentioned
above, we shall analyze only those nonequilibrium states of
the form (1), which for future use it will be convenient to
recast in the equivalent form

cssrWd = c0 + ã sinsqW · rWd s10d

with

qW ;
1

ã
¹W c, s11d

provided that we take the limitq→0. Both qW and ã are
auxiliary variables which are introduced in order to simplify
the analysis of Eq.s9d.

Following Landau and Lifshitz[27], we also introduce a
fluctuating mass diffusion currentJi

FsrW ,td into Eq. (7). This
quantity is also a Markovian, Gaussian, stochastic process
with zero meankJi

FsrW ,tdl=0 and a fluctuation-dissipation re-
lation of the form

kJi
FsrW,tdJj

FsrW8,t8dl = 2DijcssrWddsrW − rW8ddst − t8d

= 2Dijsc0 + rW ·¹W cddsrW − rW8ddst − t8d,

s12d

where we have used Eq.s1d. The fluctuating linearized equa-
tion associated with Eq.s9d then reads

]dc

]t
= sD'¹W '

2 + Di¹W z
2ddc + ¹W lcdvl + Das¹W lc¹W zdnl

+ ¹W zc¹W ldnld − ¹W iJi
F. s13d

Note that it is coupled with the dynamics of the fluctuations
dni anddvi of the solvent.

To carry on the analysis it will be convenient to write the
dynamic equations for the solute in Fourier space. To this
end we define the Fourier transform of an arbitrary field

AW srW ,td as

ÃjskW,vd ; E E dt d3r AjsrW,tdexph− iskW · rW − vtdj, s14d

where we use a tilde to denote the Fourier transformed quan-
tity. Then, Eq.s13d reads

dc̃skW,vd = G̃skW,vds¹W lcdṽl + iDakz¹W lcdñl + iDa¹W zckldñl

− iklJ̃l
Fd, s15d

where the propagatorG̃skW ,vd is

G̃skW,vd ; s− iv + D'k'
2 + Dikz

2d−1, s16d

and the fluctuation-dissipation theorems12d is now
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kJ̃l
FskW,vdJ̃m

FskW8,v8dl = 2s2pd4Dlmdsv + v8dHc0dskW + kW8d

+
ã

2i
fdskW + kW8 − qWd − dskW + kW8 + qWdgJ ,

s17d

where we have made use of Eq.s10d. Also note thatG̃skW ,vd
satisfies the relation

G̃s− kW,− vd = G̃*skW,vd, s18d

where the asterisk denotes complex conjugate.

III. DYNAMIC STRUCTURE FACTOR

When the external concentration gradient vanishes, the
system is in equilibrium, Eq.(15) reduces to

dc̃skW,vd = − iG̃skW,vdkiJ̃i
FskW,vd, s19d

and Eq.s17d becomes

kJ̃i
FskW,vdJ̃j

FskW8,v8dl = 2s2pd4c0DijdskW + kW8ddsv + v8d.

s20d

From Eqs.(19) and (20) it follows that the equilibrium
autocorrelation function of concentration fluctuations of the
suspended impurities is then given by

kdc̃skW,vddc̃skW8,v8dleq

= − 2s2pd4c0Dijkikj8G̃skW,vdG̃skW8,v8ddskW + kW8ddsv + v8d,

s21d

which vanishes for allkW8 andv8 values except forkW8=−kW and
v8=−v. In this case we have

SeqskW,vd ; kdc̃skW,vddc̃s− kW,− vdleq

= 2s2pd4d4s0dc0DijkikjuG̃skW,vdu2, s22d

whereSeqskW ,vd stands for the dynamic structure factor in

equilibrium and uG̃skW ,vdu2=G̃skW ,vdG̃*skW ,vd. To arrive at
Eq. s22d use has been made of the propertys18d.

Let us now consider a nonequilibrium state where the

concentration gradient components¹W jc are different from
zero. Then the concentration fluctuations in Fourier space,

dc̃skW ,vd, of the solute are given by Eq.(15), while the
fluctuation-dissipation theorem for the stochastic density cur-

rent J̃i
FskW ,vd is given by Eq.(17). Then, the concentration

autocorrelation function is obtained from Eq.(15) by first

evaluationdc̃ at kW8=kW and v8=v and then multiplying by

dcskW ,vd and averaging the result over an equilibrium en-

semble. Using the fact thatJ̃i
F, dṽi, anddñi are uncoupled, we

arrive at

kdc̃skW,vddc̃skW8,v8dl

= − G̃skW,vdG̃skW8,v8dhkikj8kJ̃i
FskW,vdJ̃j

FskW8,v8dl

− ¹W ic¹W jckdṽiskW,vddṽ jskW8,v8dl

+ Da
2kdñiskW,vddñjskW8,v8dl

3fkzkz8¹ic¹ jc + kzkj8¹zc¹ic + kzki8¹zc¹ jc

+ kikj8s¹zcd2gj. s23d

Note that in contrast to Eq.(21) in the nonequilibrium
situation the density gradient introduces a coupling between
the concentration fluctuationsdc of the solute and the veloc-
ity, dv j, and orientation fluctuations,dnj. However, from Eq.
(23) it is clear that the contribution of such coupling is sec-
ond order in the density gradient. Therefore, for sufficiently
small density gradients these contributions may be neglected
compared to the first order contributions contained in the
correlation of the noisesJi

F, Eq. (17), throughã. Thus

kdc̃skW,vddc̃skW8,v8dl

= − 2s2pd4klkm8 DlmG̃skW,vdG̃skW8,v8ddsv + v8d

3Hc0dskW + kW8d +
ã

2i
fdskW + kW8 − qWd − dskW + kW8 + qWdgJ

; kdcskW,vddcskW8,v8dleq+ kdcskW,vddcskW8,v8dlneq. s24d

It is convenient to rewrite the nonequilibrium contribution in
the form

kdc̃skW,vddc̃skW8,v8dlneq= − 2s2pd4klkm8 DlmG̃skW,vdG̃skW8,v8d

3 dsv + v8d
ã

2i
o

e=±1
edskW + kW8 − eqWd.

s25d

Accordingly, if we now substitute

kW → kW +
eqW

2
, kW8 → kW8 +

eqW

2
s26d

into the right hand side of Eq.s25d, we obtain

kdc̃skW,vddc̃skW8,v8dlneq

= − 2s2pd4Dijdsv + v8ddskW + kW8d

3
ã

2i
o

e=±1
FeSki +

eqi

2
DSkj8 +

eqj

2
DG̃SkW +

eqW

2
,vD

3G̃SkW8 +
eqW

2
,v8DG . s27d

Notice that the nonequilibrium contribution to the struc-

ture factor is different from zero only forkW8=−kW and v8=
−v. Then, after explicit evaluation of the summation over the
variablee, we arrive at

H. HÍJAR AND R. F. RODRÍGUEZ PHYSICAL REVIEW E69, 051701(2004)

051701-4



kdc̃skW,vddc̃skW8,v8dlneq= − ãSki +
qi

2
DDijSkj −

qj

2
D

3 ImHG̃SkW +
qW

2
,vDG̃*SkW −

qW

2
,v8DJ ,

s28d

where Im denotes the imaginary part. We also made use of
the symmetry ofDij and Eq.s18d.

After a direct calculation from the definition ofG̃skW ,vd
we obtain

ImHG̃SkW +
qW

2
,vDG̃*SkW −

qW

2
,v8DJ

= − 2vsDikzqz + D'k'q'd

3UG̃SkW +
qW

2
,vDU2UG̃SkW −

qW

2
,v8DU2

. s29d

Replacing Eq.s29d into Eq. s28d, taking the limitq→0, and
using Eq.s22d, we arrive at

SneqskW,vd ; kdc̃skW,vddc̃s− kW,− vdlneq

=− 2kdc̃skW,vddc̃s− kW,− vdleq

v
u¹W cu
c0 sDikz cosc + D'k' sin cduG̃skW,vdu2,

s30d

where we have introduced explicitly the anglec. Thus, the
equilibrium plus nonequilibrium contributions to the dy-
namic structure factor read

SskW,vd ; SeqskW,vd + SneqskW,vd

= SeqskW,vdH1 − 2v
u¹cu
c0

sDikz cosc + D'k' sin cd

3uG̃skW,vdu2J . s31d

IV. RESULTS

A. Equilibrium

We first calculate the light scattering spectrum of the sus-
pended impurities when there is no concentration gradient
present for a solvent both in the nematic phase and in its
isotropic phase. To this end, we first take the isotropic limit
of the dynamic structure factor in the equilibrium equation

(22) by making the substitutionsDij =Disodi j and kW =kW iso,
whereDiso denotes the diffusion coefficient of the impurities
in the solvent above the clearing point, i.e., in the isotropic

phase;kW iso is the scattering wave vector associated with a
process occurring in the isotropic medium with a refractive
index niso. Furthermore, we shall approximateDiso and niso
by the averagessDi+2D'd /3 andsni+2n'd /3, whereni and
n' are the refractive indices of the nematic phase. Note that

this implies Di .Diso.D'. In the isotropic limit Eq.(22)
reads

Siso
eqskW,vd = 2s2pd4d4s0dc0

Disokiso
2

v2 + sDisokiso
2 d2 . s32d

Let us now define the dimensionless equilibrium structure
factor of the impurities in the nematic phase of the solvent,
S0

eqsv0d, by

S0
eqsv0d ;

SeqskW,vd

Siso
eqskW,0d

, s33d

whereSeqskW ,vd is given by Eq.s22d and wherev0 is the
dimensionless frequency

v0 =
v

Disokiso
2 . s34d

Inserting Eqs.s22d and s32d into Eq. s33d, we have

S0
eqsv0d =

a

1 + a2v0
2 , s35d

where we have introduced the dimensionless coefficient

a ;
Disokiso

2

Dikz
2 + D'k'

2 , s36d

which depends on the scattering geometry and on the diffu-
sion coefficients of the solvent both in the isotropicspretran-
sitional phased and in the nematic phase. In this sense,a is a
parameter that measures the effect of the nematic ordering on
the light scattered by the impurities. Since in the isotropic
limit Di=D'=Diso and k=kiso, we have thata=1 and
S0

eqsv0d reduces to

S0,iso
eq sv0d =

1

1 + v0
2 . s37d

This result coincides with that previously obtained in Ref.
f34g.

The dynamic structure factor(35) is a symmetric Lorent-
zian with heighta and half width at half height 1/a. Thus,
for a.1, S0

eqsv0d is larger and narrower thanS0,iso
eq sv0d,

while if a,1 the dynamic structure factor in the nematic
phase becomes smaller and wider than the corresponding one
in the isotropic solvent. To illustrate this effect quantitatively,
note that in the isotropic case both the incident and scattered
beams propagate in a medium with refraction indexniso.
Then, as usual[35],

kiso = 2k0niso sin
u

2
, s38d

wherek0 is the magnitude of the wave vector of the incident
beam in vacuum.

On the other hand, when the solvent is in the nematic
phase, anisotropic effects appear and light propagation inside
the sample strongly depends on the polarization of the
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beams. According to Fig. 1, the incident beam will propagate
as in an isotropic medium with refractive indexn' (ordinary
refractive index) and

kW1 = k0n'êz, s39d

whereêz is a unit vector along thez axis.
For the scattered beam, the refractive index is the effec-

tive refractive index, which depends on the orientation of the
vector p̂2 with respect to the optical axis, and is given by

neffsud =
nin'

fni
2 cos2 u + n'

2 sin2 ug1/2. s40d

Hereni is the refractive index for a linearly polarized beam
along the optical axis, i.e., the extraordinary refractive index.

Thus, sincekW =kW1−kW2, from Eqs.s39d and s40d we find

kW2 = k0neffsudsêz cosu + êy sin ud, s41d

ki = k0fn' − neffsudcosug, s42d

and

k' = − k0neffsudsin u, s43d

êy being a unit vector along they axis. As a result,a may be
rewritten as

a =
2

3

niso
2 s1 − cosuds1 + 2sd

fn' − neffsudcosug2 + sneff
2 sudsin2 u

, s44d

with s;D' /Di. For small scattering angles we have
neffsud.n' and

a >
s1 + 2sd

3s
Sniso

n'

D2

. s45d

Since typical values ofs for thermotropic nematics ares
.0.5,1 and usuallyniso.n', in this limit we havea.1.
For instance, experimental data for the diffusion of two
different dyessmethylred and nitrosodimethylanilined in
the thermotropic nematicN-sp-methoxybenzylidened-
p-butylaniline sMBBA d gives for both dyess.0.6 f14g.
Moreover, for MBBA the ordinary and extraordinary re-
fractive indices are, respectively,n'=1.56 andni=1.81
f25g, so we haveniso.1.64. In this form we obtaina
.1.36 for u=1°.

Let us defineDh
eq as the relative change in the height of

the equilibrium spectrum with respect to the isotropic case,
that is,

Dh
eq;

S0
eqs0d − S0,iso

eq s0d
S0,iso

eq s0d
= a − 1. s46d

Similarly, the relative width change at half height,Dv
eq, is

Dv
eq;

vs1/2d − viso
s1/2d

viso
s1/2d =

1

a
− 1, s47d

wherevs1/2d and viso
s1/2d denote, respectively, the frequency

for which the equilibrium spectrum, in the nematic or iso-

tropic phase, has half maximum height. For the particular
experimental situation considered abovef14g, we find
Dh

eq.0.36, i.e., a height increment of 36%, andDv
eq.

−0.26, a width decrease of 26%. These results are plotted
in Fig. 2. Note that as the scattering angle increases,a
decreases monotonically and eventually it takes values
lower than unity. For example, in the particular case of
dye diffusion in MBBA discussed above withu=85°, we
havea=0.92,Dh

eq.−0.076, andDv
eq.0.082.This behavior

is illustrated in the inset of Fig. 2.

B. External concentration gradient

We shall now analyze the effect of the impurity concen-
tration gradient on the dynamic structure factor, restricting
ourselves to considering a solvent in the nematic phase. Fol-
lowing the same procedure, we define a normalized dynamic
structure factorS0sv0d which contains both the equilibrium
and nonequilibrium contributions,

S0sv0d ;
SskW,vd

Siso
eqskW,0d

= S0
eqsv0dH1 + 2

u¹W cu
c0

kz cosc + sk' sin c

kz
2 + sk'

2

3
av0

1 + a2v0
2J , s48d

where SskW ,vd and Siso
eqskW ,0d are defined by Eqs.s31d and

s32d, respectively. By using Eqs.s42d and s43d, Eq. s48d
may be rewritten as

S0sv0d = S0
eqsv0d + Sneqsv0d = S0

eqsv0dH1 + 2gcb
av0

1 + a2v0
2J ,

s49d

wheregc is the dimensionless concentration gradient

FIG. 2. Normalized structure factorS0
eqsv0d as defined by Eq.

(35), plotted vs normalized frequencyvo. s—d corresponds to the
nematic phase ands–––d represents the isotropic contribution,a is
calculated from Eq.(45) for the values of the material parameters
given in Sec. IV and for a smallsu=1°d and a largesu=85°d value
of u.
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gc ;
u¹W cu
k0c0

, s50d

and

b = bsu,c;sd

;
fn' − neffsudcosugcosc − sneffsudsin u sin c

fn' − neffsudcosug2 + sneff
2 sudsin2 u

s51d

is a dimensionless function that quantifies the effect of the
relative orientation of the density gradient and the scattering
vector. Notice that, in the isotropic limitn'=ni=niso and s
=1,b reduces to

biso =
sinsu/2 − cd

2niso sin2su/2d
, s52d

while for small scattering angles, sinu>u ,cosu>1,

b > −
sin c

un'

, u ! 1, s53d

where use has been made of the fact thatneffsud.n' for
small u. Therefore, in this limit the nonequilibrium con-
tribution to the dynamic structure factor may be important
due to the dependence ofb on u−1. In the following we
will restrict ourselves to the case whereu!1, for in-
stance,u.1°, but c will remain unrestricted. Equation
s53d also shows that for small scattering angles the largest
nonequilibrium effect is obtained for the valuec=p /2,
that is, when the incident light beam and the external gra-
dient are perpendicular, or, equivalently, when the scatter-
ing vector and the density gradient are parallel. This fact
is qualitatively similar to the experimental observations of
the effects induced by a temperature gradient on the light
scattering spectrum of liquid water performed by Beysens
et al. [5]. Note thatgc may take only small valuesugcu!1
which are compatible with linear irreversible thermodynam-
ics, for instance,gc.10−2.

From Eq.(49) it is clear that the density gradient intro-
duces an asymmetry in the spectrum which consists in an
increment and a displacement of its maximum with respect
to its equilibrium position. In order to calculate the magni-
tude of the frequency shiftṽ0 as function ofgc, we take the
derivative of Eq.(49) with respect tov0 and equate the result
to zero. This yields the condition

a3ṽ0
3 + 3gcba2ṽ0

2 + aṽ0 − gcb = 0. s54d

Expandingṽ0 in a power series ofgc we have, up to first
order ingc,

ṽ0 =
b

a
gc. s55d

Therefore, the maximum is shifted by an amount propor-
tional to the density gradient.

The relative difference between the structure factor(49)
and the equilibrium structure factor(35) as a function of the
frequencyv0 may be quantified by introducing the following
function:

D1
neqsv0d ; US0sv0d − S0

eqsv0d
S0

eqsv0d
U=U2gcb

av0

1 + a2v0
2U ,

s56d

which has a maximum at the frequencyv̂0= ± sad−1. In other
words, the largest relative difference betweenS0sv0d and
S0

eqsv0d due togc is obtained atv̂0 and turns out to be

D1
neqsv̂0d = ugcbu. s57d

These effects of the solute concentration gradient on its
dynamic structure factor may be illustrated by considering
again the experimental values.0.6, corresponding to the
diffusion of dye impurities in nematic MBBA,ni=1.81,
niso.1.64, andu=1°. In Fig. 3 we plot and compare both
S0sv0d andS0

eqsv0d by takingc=p /2 for gc=1.5310−2. We
obtain a frequency shiftṽ0=−0.40 and a maximum relative
change of the spectrumD1

neq.0.55s55%d at v̂0= ±0.73.

V. CONCLUDING REMARKS

Summarizing, by using a fluctuating hydrodynamic ap-
proach we have investigated theoretically the influence of the
effects produced by a uniform impurity concentration gradi-
ent on the light scattering spectrum of a suspension in a
nematic solvent. We considered both the isotropic pretransi-
tional as well as the nematic phase of the solvent, when the
system is in a fully thermodynamic equilibrium state and in a
nonequilibrium steady state induced by a dye-concentration
gradient. In the former state, the spectrum is symmetric
(Lorentzian) with respect to the frequency shifts, but aniso-
tropic through its explicit dependence on the ratio of the
diffusion coefficients of the dye, parallel and normal to the
mean molecular axis of the nematic. The values of these
coefficients were taken from experimental measurements on
the diffusion of methylred and nitrosodimethylaniline in a

FIG. 3. Normalized structure factorS0sv0d as given by Eq.(49)
vs normalized frequencyv0 for u,1°, c=p /2, andb calculated
from Eq. (53) with n'=1.56. s—d corresponds togc=1.5310−2

and s–––d to gc=0.
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MBBA solvent. Our results showed that the anisotropy in-
creases the height and decreases the width at midheight with
respect to the isotropic case in amounts which vary up to
36% and 26% for MBBA.

It should be emphasized again that the nonequilibrium
correction is an odd function ofv that introduces an asym-
metry in the shape of the structure factor, shifting the maxi-
mum toward the region of negative values ofv. Close to
equilibrium, the size and direction of this shift are propor-
tional to the magnitude of the dye-concentration gradient and
depend on its relative orientation with respect to the initial
director’s orientation. For small dimensionless concentration

gradientss,10−2d, this effect is maximum when these vec-
tors are perpendicular and the scattering angle is lows,1°d
and the size of the shift depends on the magnitude of the
gradient, as indicated in Fig. 3.

Thek dependencesS0
eqskW ,vd,k−2 andSneqskW ,vd,k−3 are

related to the nature of the variables involved. For a simple
fluid all the variables are conserved, whereas for a nematic
the orientation state variables are not conserved.

To our knowledge, the physical situation dealt with here
has not been considered in the literature and our approach
yields results that might be observable.
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